高等数学(二)-导数与微分

1. 导数概念

  • 设函数$y = f(x)$在点$x_0$的某个邻域内有定义,当自变量x在$x_0$处取得增量$\Delta x$(点$x + \Delta x$仍在该邻域内)时,相应地,因变量取得增量$\Delta y = f(x_0 + \Delta x) - f(x_0)$;如果$\Delta y$与$\Delta x$之比当$\Delta x \to 0$时的极限存在,那么称函数$y = f(x)$在点$x_0$处可导,并称这个极限为函数$y = f(x)$在点$x_0$处的导数,记为$f’(x_0)$,即$f’(x_0) = \lim_{\Delta x\to 0}\frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0}\frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$,也可记作$y’|_{x=x_0}$,$\frac{dy}{dx}|_{x = x_0}$或$\frac{df(x)}{dx}|_{x = x_0}$
  • 如果函数$f(x)$在开区间I内的每点处都可导,那么就称函数$f(x)$在开区间I内可导。这时,对于任一$x\in I$,都对应着$f(x)$的一个确定的导数值,这样就构成了一个新函数,这个函数叫做原来函数$y = f(x)$的导函数,记作$y’$,$f’(x)$,$\frac{dy}{dx}$或$\frac{df(x)}{dx}$
  • 函数的和、差、积、商的求导法则
    • 如果函数$u = u(x)$及$v = v(x)$都在点x具有导数,那么它们的和、差、积、商(除分母为零的点外)都在点x具有导数,且
      • $[u(x) \pm v(x)]’ = u’(x) \pm v’(x)$
      • $[u(x)v(x)]’ = u’(x)v(x) + u(x)v’(x)$
      • $[\frac{u(x)}{v(x)}]’ = \frac{u’(x)v(x) - u(x)v’(x)}{v^2(x)}$($v(x) \neq 0$)
  • 反函数的求导法则
    • 如果函数$x = f(x)$在区间$I_y$内单调、可导且$f’(x)\neq 0$,那么它的反函数$y = f^{-1}(x)$在区间$I_x = \{x|x = f(x), y\in I_y\}$内也可导,且$[f^{-1}(x)]’ = \frac{1}{f’(x)}$或$\frac{dy}{dx} = \frac{1}{\frac{dx}{dy}}$
  • 复合函数的求导法则
    • 如果$u = g(x)$在点x可导,而$y = f(u)$在点$u = g(x)$可导,那么复合函数$y = f[g(x)]$在点x可导,且其导数为$\frac{dy}{dx} = f’(u)\cdot g’(x)$或$\frac{dy}{dx} = \frac{dy}{du}\cdot\frac{du}{dx}$
  • 基本求导法则和导数公式
    • $(C)’ = 0$
    • $(\sin x)’ = \cos x$
    • $(x^\mu)’ = \mu x^{\mu - 1}$
    • $(\cos x)’ = -\sin x$
    • $(\tan x)’ = \sec^2 x$
    • $(\cot x)’ = -\csc^2 x$
    • $(\sec x)’ = \sec x\tan x$
    • $(csc x)’ = -\csc x \cot x$
    • $(a^x)’ = a^x\ln a (a > 0, a\neq 1)$
    • $(e^x)’ = e^x$
    • $(\log_a x)’ = \frac{1}{x\ln a} (a > 0, a \neq 1)$
    • $(\ln x)’ = \frac{1}{x}$
    • $(\arcsin x)’ = \frac{1}{\sqrt{1 - x^2}}$
    • $(\arccos x)’ = -\frac{1}{\sqrt{1 - x^2}}$
    • $(\arctan x)’ = \frac{1}{1 + x^2}$
    • $(\arccot x)’ = -\frac{1}{1 + x^2}$

2. 函数的微分

  • 设函数$y = f(x)$在某区间内有定义,$x_0$及$x_0 + \Delta x$在这区间内,如果函数的增量$\Delta y = f(x_0 + \Delta x) - f(x_0)$,可表示为$\Delta y = A\Delta x + o(\Delta x)$,其中A是不依赖于$\Delta x$的常数,那么称函数$y = f(x)$在点$x_0$是可微的,而$A\Delta x$叫做函数$y = f(x)$在点$x_0$相应于自变量增量$\Delta x$的微分,记作$dy$,即$dy = A\Delta x$